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Abstrsct. By utilizing newly extended series for self-avoiding walks and polygons yith 
nearest-neighbour interactions on the square lattice we have examined the validity of a 
recent conjedure on the scaling of their partition functions at low temperatures. The ratio 
of the walk to  polygon partition functions should have a length-dependent p o w  law 
singularity, 8, at  all temperatures. At low temperatures we h d  yD i s  0.92*0.09 in distinc- 
tion to the conjectured value of 19/16= 1.1875, though we find agreement at high tempera- 
tures and at the &temperatures with the conjectured values there. 

The collapse transition of a dilute polymer solution is a subset of perennial interest 11- 
31. Much work has been accomplished on lattice models such as interacting self-avoiding 
walks to elucidate this phenomenon. The lattice models possess a critical point as a 
function of temperature which is identified as the O-point for polymers. This point can 
be viewed as a type of tricritical point in the appropriate thermodynamic space. The 
critical phenomena analogy arises from the 'formal' mapping [&6] of polymer config- 
urations to those of the magoetic O(n) model in the n+O limit. The study of a single 
polymer has focused on two cases. The high temperature or good solvent regime has 
been studied extensively, as has been the region around the O-point. Much less has 
been attempted at low temperatures (that is, in a poor solvent) with some work at  zero 
temperatures [7]. In the above works the polymer density is zero. The subject of dense 
polymer networks has also been active €8-1 I]. In a system of finite polymer density, at 
low temperatures, the solution phase-separates into a dense phase and a dilute one. 
Recently, this dilute low temperature phase, modelled by a single self-avoiding walk 
with strong effective monomer-monomer attraction, has become the subject of several 
conjectures. 

At high temperatures and at the 8-point the partition function for a walk is believed 
to scale as 

where y is some universal exponent that takes on one value at high temperatures and 
another at the &temperature. Here, p is related to the temperature dependent bulk 
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free energy. (Z is also temperature dependent.) At these temperatures the walk has zero 
average internal density with the radius of gyration and end-to-end distance scaling as 

<R. > - Rnv (2) 

with v> l/d, where d is the dimension of the system. 
At temperatures below the &point a single walk is, on average, in a collapsed state 

with a finite internal monomer density. The radius of gyration and end-to-end distance 
scale with the exponent v= l/d. Taking account of this observation, it has been conjeo 
tured [12,13] that at low temperatures the above scaling (1) for the partition function 
should be replaced by 

Z, -Zp;p;"ny-' (3) 
where c is most likely to have the value (d- I)/d and so p I  is related to a temperature 
dependent surface free energy. Again, Z is temperature dependent. The rationale for 
such a conjecture arises from the posited generic singularity structure of first order 
transitions [ 141. This conjecture was supported by work on interactingpartially-directed 
self-avoiding walks, first numerically [IS], and then by exact calculation [16] in two 
dimensions. 

This work was extended by Duplantier [17] who pointed out that because the walk 
is internally dense at low temperatures it may be possible to adapt work on dense 
polymer networks where the partition function scaling form above has occurred in a 
different context. He further suggested that previous work on Hamiltonian walks on 
the Manhattan lattice 19, IO] was applicable and conjectured values for the y exponent 
for open and closed polymers in two dimensions. We note that the connection between 
Hamiltonian walks and the T=O limit of the collapse problem has been suggested 
previously [18]. However, it is not clear, firstly, whether the dense analogy is truly 
applicable because of (unseen) subtleties with the surface configurations and, secondly, 
whether the Manhattan lattice imposes a relevant constraint that changes these values 
[19]. To attempt to answer these questions we have utilized newly extended series for 
interacting self-avoiding walks and polygons on the square lattice. 

The series for interacting self-avoiding walks has been extended using direct ennmer- 
ation on an Intel Paragon supercomputer [ZO] up to length n=29. The values of the 
walk partition function ZF(o) can be found for any o as 

Z:(o)=C c,,(m)w" (4) 
m 

where o is the Boltzmann weight associated with each interaction, related to the tem- 
perature and coupling constant J a s  a, =exp(pJ), and cn(m) is the number of configura- 
tions of length n with m interactions. The series for interacting self-avoiding polygons 
has also been extended up to n=42 by using the finite lattice method [21]. The partition 
function is similarly defined as 

zh)=CP"(m)""  ( 5 )  
m 

withp.(m) being the number of rooted polygons (loops) of length n with m interactions. 
The scaling form (3) contains four unknown parameters, even assuming that c= 

1/2, and it would be very difficult to extract a reasonable value of y without knowing 
po(w) and p,(w). To ameliorate this problem we have concentrated our study to the 
ratio of walk Z: to polygon Z :  partition functions, which we denote as Q.(o). This 
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Table 1. Partition functions at high temperature (e= 1.000). 

2.50000000e+01 
1.95000000e+02 

16 

20 
22 
24 
26 
28 

32 
34 
36 

40 
42 

4.00000000e+00 
1.20000000e+01 

1.47900000e+03 
1.10250000e+04 
8.12330000e+04 
5.93611000e+05 
4.31 133300ef06 
3.1164683Oe+07 
2.24424291e+08 
1.61114012e+09 
1.15365993e+10 
8.24281966e+lO 

function should have the scaling form 

Z r / Z k  Qn(w) ,., enr” 
where 

YD=Ylvalrs-Yloops. 

41n 
6.25000000 

16.25000000 
26.41071429 
39.37500000 
5 4.5 9 2 0 6 9 8 9 
72.11017979 
91.71487832 

113.39869520 
137.13507380 
162.89635890 
190.65456640 
220.38459420 
152.06320990 
l85.66899280( 1) 
%21.182023(8) 
%58.58376070( 1) 
)97.85688( 1) 
438.98515(2) 
181.95329(4) 
526.74690(7) 

Note that at high and 0- temperatures the y-like exponent for loops is usually denoted 
as a - 1. This form should be valid at all temperatures with y D  assuming different values 
at high, 0- and low temperatures. The conjecture of Duplantier [17] determined from 
dense walks on the Manhattan lattice is that 

y D =  19/16= 1.1875 (8) 
for low temperatures (that is, large 0). 

Because of the differing lengths of the interacting walk and polygon series (29 steps 
and 42 steps respectively), we have used the method of differential approximants to 
extend the walk series at the required temperatures. In this technique, a number- 
typically 12-f inhomogeneous differential approximants are constructed that utilize 
all the available terms (29). Such approximants implicitly provide estimates of all future 
terms. We have explicitly evaluated the next 13 terms, taking as our estimates the mean 
of the values given by the differential approximants, and taking as the error the standard 
deviation. The results are given in tables 1-3, where it can be clearly seen that the error 
increases with w, and also, of course with the order of the estimated term. For w = 1, 
the first unknown term can be estimated with an error better than 1 part in lo9, while 
for w=3,  the 13th unknown term can only be estimated with an error of 1 part in IO‘. 
Nevertheless, even this worst case is sufficient for our subsequent analysis. This method 
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TabJe 2. Partition functions at estimated &temperature (m=1.931). 

z:, 
4.00000000e~00 
2.31720000e+Ol 
1.86980528e+02 
1.47052275e+03 
121589867e+04 
1.05680646e+05 
9.38597465e+05 
8.44895530e+06 
7.71556406e+07 
7.13294615e+08 
6.65768863e+09 
6.26306464eC10 
5.93226873e+11 
5.65234291e+12 
5.41333920e+13 
5.20783699e+14 
5.03015913e+15 
4.87586020e+16 
4.74141858e+17 
4.62400596et18 

20 
22 
24 
26 

34 
36 
38 
40 
42 

Q, 
8.11200000 

14.75506439 
19.41765767 
26.08432227 
33.10227845 
39.88754059 
46.98103779 
54.50730830 
62.26467919 
70.19883730 
78.33415331 
86.67360699 
95.19479080 

103.88658(8) 
112.7448(3) 
121.7637(7) 
130.937(1) 
140.261(3) 
149.731(5) 
159.337(6) 

z:, 
4.00000000e+00 
3.60000000e+01 
4.40000000e+02 
5.12000000e+03 
6.63840000e+04 
9.32400000e+05 
1.33023040e+07 
1.94372280e+08 
2.92281812e+09 
4.49030413e+10 
7.00275379e+11 
1.10665766e+13 
1.77135867e+14 
2.86704279e-tl5 
4.68568795e+16 
7.72373830e+17 
1.28297713e+19 
2.14625630e+20 
3.61388474et21 
6.12166211e-j-22 

Table 3. Patiition fuuctious at low temoerature (m=3.000), 

Qn 
10.25000000 
16.08333333 
20.16 136364 
27.08300781 
32.81334358 
37.61909374 
43.08714378 
48.60938024 
53.84371149 
58.94961226 
64.09057745 
69.24910627 
74.34096604 
79.378(2) 
84.383(6) 
89.37(2) 
94.39(4) 
99.34(6) 

104.20(9) 
109.2(1) 

20 
22 
24 
26 
28 

34 

38 
40 
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Figure 1. This graph is a log-log plot of the ratio of partition functions Qm(m) against 
length n for three temperatures. The Boltrmann weights chosen I"= 1.0,1.913,3.0 represent 
high (infinite), critical and low temperatures respectively. The crosses are high temperature 
values, the open circles are 8-tempeature values and the full circles are the low temperature 
values. ~. 

of coefficient prediction was justified to some extent in previous work [U] in which a 
coefficient predicted to 10 digit accuracy was found to be correct to all claimed digits. 

We have evaluated the partition functions at threespecific temperatures: one high, 
one low and one at an estimated &temperature. The estimated values of the exponent 
yD at high and @-temperatures can be compared with well regarded (but non-rigorous) 
theoretical exact values to help establish the accuracy of our method. The high tempera- 
ture was simply chosen as a, = 1.0 (that is, infinite temperature) to minimize unwanted 
thermal corrections and the estimated exponent extracted (1.847 2~0.032) compared well 
with the exact value of 59/32= 1.843 75. The &temperature was taken from a recent 
estimate [23] as we =exp(O.658 f0.004) = 1.931 f0.008 and the estimated exponent 
(1.298f0.028) also compared well with the exact value of 9/7=1.2857. We note in 
passing that the uncertainty in the critical point naturally increases the error in the 
estimation of the value of yD at this point, as there is a drift of the estimated exponent 
value with the assumed critical temperature. This can be utilized for an estimation of 
the 0-temperature assuming that the conjectured value of y D =  9/7 is correct and yields 
the estimate w~=exp(0.663f0.016) = 1.94f0.03. 

The choice of a suitable low temperature was difficult as one had to balance the 
concerns of being far enough away from the &point to avoid'crossover effects while 
not being at too low a temperature where parity effects (due to certain polygon sizes 
permitting significantly more interactions) make it impossible to extrapolate series 
meaningfully. By examining the partition function ratio over a range of temperatures 
we decided upon w = 3.0 as a value where exponent estimates could be usefully extrapol- 
ated while crossover curvature in the estimates seemed to be small. Given these consid- 
erations, our result at  this low temperature for yD, 0.921fO.088, excludes the 
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Table 4. yo extrapolations and conjectured values in all three regimes. 

1.29 

w = 1.000 

2.35658118 
1.68824168 
1.78970588 
1,79220461 
1.80541916 

15 1.80099516 
17 1.80183222 

1.80386831 
21 1.80618465 
23 1.80837358 
25 1.81042024 

0.95 

1.81229778 
1.81401183(1) 
1.8155706(4) 
1.8169889(4) 
1.8182812(5) g 1 1.819462(i). ~ 

1.820542(2) 
1.821534(3) 

1.85 
ewt 

I w 
I I 59 132 = 1.84375 

-. . w = 1.931 I w = 3.000 
r,” lo& slopes 

1.47544613 I 1.11108410 
0.95451366 
1.32269838 
1.30685403 
1.20960799 
1.22577962 
1.26156301 
1.26289746 
125839056 
1.26020239 
1.26389686 

0.78553572 
1.32263930 
1.05269360 
0.88664211 
1.01633727 
1.02384742 
0.97065867 
0.95055357 
0.96095831 
0.96714474 

1.2708(2) 0.955(8) 

conjectured value of 19/16= 1.1875. The values of the two partition functions and their 
ratio are given in tables 1, 2, and 3 for these three temperatures. Figure 1 is a plot of 
the ratio of partition functions a. It can be seen that these are smooth on a graphical 
scale in this log-log plot. 

In order to estimate exponent values, we used two different methods. Firstly, we 
performed a differential approximant analysis [24]. At all temperatures we used approxi- 
mants with critical points biased at 1.0 with and without assumed confluent exponents. 
The approximants giving the best results were the ones utilizing all available coefficients 
and covering all possible combinations of approximants in the range of [1..3, L.3, 1..3, 
1..3; -1..2] with assumed confluent exponents. Averaging over these approximants 
after discarding defective ones we get the results presented in table 4. Secondly, we 
computed the local slopes from the log-log plot and estimated their limiting values 
using a suite of extrapolation methods [XI,  thereby confirming the results obtained 
from the differential approximant analysis. 

Table 4 gives the list of local slopes extracted from the Q. and figure 2 plots these 
against l /n to illustrate the data. They show graphically the answers given by differential 
approximant analysis. 

In conclusion, the differential approximant analysis gives answers consistent with 
the believed exact results at high (59/32= 1.84375) and 0- (9/7= 1.2857) temperatures 
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Figure 2. This graph is a plot of local estimates of the exponent r" against I/n for the 
three temperatures. Thhe crosses are high temperatures values, the ogen circles are @-tempera- 
ture values and the Full circles are the low temperature values. The arrows indicate the 
conjectured results. At low temperatures the estimates are more erratic than at high tempera- 
ture though they still settle to a value well away from the conjectured 19/16. 

but the value extracted at low temperatures (0.921 iO.088) excludes the recent conjec- 
ture (19/16=1.1875). 
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